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POLYTROPES IN PHASE PLANE 
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Abstract— Polytropes  are  gaseous spheres in thermodynamic and hydrostatic equilibrium with a certain equation of state  that  are  very  

useful  in  realistic stellar  modal. In this paper we have demonstrated that the pressure of the stars keeps on increasing from its surface to 

centre. Approximate analytic solutions to the equilibrium equations have been presented in phase planes such as (Up,Vp), Transformations 

connecting solutions in this phase plane have been obtained and discussed. 

Index Terms— Polytropes,  stellar modal, Analytical Study, thermodynamic and hydrostatic equilibrium. 

——————————      —————————— 

1 INTRODUCTION                                                                     

ane-Emden equation is a non-linear second order diffe-
rential equation which governs the structure of a poly-
tropic gas sphere in equilibrium under its own gravita-

tion .The equation  is of importance in astrophysics because, 
for the valve of the polytropic index n between 0 and 3, the 
equation approximates to a reasonable accuracy the struc-
ture of a variety of the realistic stellar models. though mod-
ern texts no longer give them through  treatment that  clas-
sical works of Emden and Chandrasekhar do, Closed form 
analytical solution, has been studied by Fowler[1],  Hopf[2]  
and Chandrasekhar for n<3, n=3, and n>3, respectively.  It is 
well known so far from some of these studies that the poly-
tropic index n=0 and 1 represent, the liquid and gaseous 
states of a polytrope of uniform density respectively. The 
origin and the behavior of Lane-Emden equations were re-
ported same whatever be the index of a polytrope[3-14]. The 
Miline[3]   was able to determine the maximum limiting den-
sity[15], whereas the structure of planet was also re-
ported[16, 17]  for the same values of n, and the maximum 
value of mass of a star[18] for n→0 and n→1 general relativi-
ty neutron star[19]  were also reported for the same values of 
n, and  very massive stellar models in Ni's theory of gravi-
ty[20] , relativistic stellar structures and X-ray transients in 
Ni's theory of gravity[21], Further thermo dynamical equili-
brium of stars clusters embedded in an isothermal configura-
tion[22]. 
Considering the stars, which are in equilibrium and in a 
steady state can be characterized by three physical parame-
ters i.e.  its mass M; its radius R; and its luminosity L(L re-
fers to the amount of radiant energy in ergs , radiated by the 
star per second to the space outside,) analytic  series solu-
tions to the equilibrium equations have been presented in 
phase planes such as (Up,Vp), Transformations connecting 
solutions in this phase plane have been obtained, Since the 
nucleus includes the immediate  neighborhood of the origin 
(n=0), it will be of the interest  to investigate it, in the light of 

this new concept of uniform density for  n →0  and n →1.  

2 ARRANGEMENT IN (VP, UP) PHASE PLANE :- 

The equations governing the structure of a polytopic configu-
ration of index n with angular velocity  can be expressed 
with the help of electromagnetic Maxwall’s  equations  
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where, P is the pressure,  the density,  the gravitational po-

tential, X the distance from the axis of rotation, K a constant, 
and G the gravitational constant (6.67 x 10-8 dynes cm2/gm2).  

Equation (1), (2) and (3) enable us to write the  generalized 
equation in ( p, P) plane in the form. 
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for non-rotating case = 0 and Polytropic index n=1 Equation 

(4) becomes :  
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Now we define Up and Vp for non-roating case i.e. = 0 and 
for polytropic index n=1, as follows 
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 are homology invariant functions. 

The First order equation between Up, & Vp can be obtained as 
follows,  
From equation (4a) 
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from (6), we can write. 
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Using (8) & (9) we get,  
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Using equation (7a), we get  
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From equation (7b), we get. 
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Using (11) and (9), and after simplification, by above process, 

we get,  
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Using Equation (10) & (12) we get,  
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This is the required structure equation in (Vp, Up) phase 
plane. 
. 
2.1 Solution of structure equation in (Vp, Up) phase 
plane :-  
We solve the equation (13) for three cases, spheroidal (N=3), 
cylindrical (N=1), and for plane symmetrical case (N=0). 
We solve the structure equation (13) by assuming series solu-
tion as followes, 
consider, 

2 3 4(1 ) ..... (14)1 2 3 4U N a V a V a V a Vp p p p p

 
We find that it satisfies the initial condition  
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differentiating equation (14) w.r.t Vp ,   we get 
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putting the value of Up & 

pdV
pdU  (14) & (15) respectively, in 

(13), we get,  
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Now we disscuss about equation (16) in three different cases :  
2.2 :- For Spheroidal shape : (N=2).  
from Equation (16),  
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Equating the co-efficients of powers of Vp, we get  
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 for N = 2, series solution becomes, from equation (14) 
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2.3  For Cylindrical shape i.e. N=1. 
           From equation , (16) 
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Equating the co-efficient of powers of Vp we get, 
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For N=1, series solution becomes, from equation (14). 
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2.4 : For plane - symmetric shape i.e. N = 0 from equation (16)  
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Equating the co-efficient of powers of Vp 
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For N=0, from equation (14), the series solution becomes : 
1 1 2 12 3 41 ..... (19)
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the images in the paper itself. Please don’t send the images as 
separate files. 

 

2.4 Results and Discussion 
graphical  representation  of (Up,Vp)  phase plane  for  N 
=2  & n=1    (Fig. 1)  ,    for  N =1  & n=1 (Fig.2) and N=0 & 
n=1  (Fig. 3),   where  Up  show  pressure  and   Vp  show 
radius of  polytropes. The graphs plotted by our series so-
lution method are in good agreement by the graph with 
the stellar model[19].  It is evident from  the figure that the 
as pressure of the polytropes increases, its radius decreas-
es   in  all the  three cases  implying  that  the  mass of the 
stars keeps on increasing   as we move  from surface  to 
centre.  The graph for N=0 , N=1, and N=2 between Up  

Vp  has been plotted and found to be  in good agreement 
with the results graph of N=0 (plane Symmetric) N=1 (Cy-
lindrical) N=2(spheroidal) the shape stellar structure of 

given value. 
 
 

 
                     Fig 1.  Graphical  representation  of  (Vp,Up)   
phase  plane  for  N =2  & n=1    where  Vp show radius   ,Up 
show pressure    of  polytropes. 

 

 
 
         Fig 2.  Graphical  representation  of  (Vp,Up)   
phase  plane  for  N =1  & n=1   where  Vp

p 
show 

 radius   ,Up
 
show pressure    of  polytropes.  

 
 

 
Fig 3.    Graphical  representation  of  (Vp,Up)   phase  
plane  for  N =0  & n=1  where  Vp

  
 show radius   ,Up            

show pressure    of  polytropes.  
 

4 CONCLUSION 

             An unified analytic study structure of the nucleons of  
Polytropes N=0 ( Plane Symmetric) N=1 (Cylindrical) N=2 
(spheroidal) has been investigated following the concept of 
sphere of uniform density defined by polytropic index (n) 
tending to zero. The graphs plotted by our series solution me-
thod are in good agreement by the graph with the stellar mod-
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el[19]. The mass of the stars keeps on decreasing  as  we move 
from  centre to surface. Our given analysis can be applied to 
the interdisciplinary modeling, environmental and biological 
systems which may quite often involve complicated forms of 
linear or non-linear differential equation. 
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